DocumentCode :
2026162
Title :
Mining maximal frequent itemsets on graphics processors
Author :
Li, Haifeng ; Zhang, Ning
Author_Institution :
Sch. of Inf., Central Univ. of Finance & Econ., Beijing, China
Volume :
3
fYear :
2010
fDate :
10-12 Aug. 2010
Firstpage :
1461
Lastpage :
1464
Abstract :
Maximal frequent itemsets are one of several condensed representations of frequent itemsets, which store most of the information contained in frequent itemsets using less space. This paper proposes an efficient implementation of maximal frequent itemset mining MG utilizing graphics processing units. Our method employs a single-instruction-multiple-data architecture to accelerate the mining speed with using a bitmap data structure of frequent itemsets. Our experimental results show that our algorithm is effective and efficient.
Keywords :
computer graphics; coprocessors; data mining; bitmap data structure; data mining; graphics processing units; graphics processors; maximal frequent itemsets; single-instruction-multiple-data architecture; Data mining; Data structures; Graphics processing unit; Itemsets; Layout;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems and Knowledge Discovery (FSKD), 2010 Seventh International Conference on
Conference_Location :
Yantai, Shandong
Print_ISBN :
978-1-4244-5931-5
Type :
conf
DOI :
10.1109/FSKD.2010.5569206
Filename :
5569206
Link To Document :
بازگشت