DocumentCode :
2031161
Title :
Encoding via Gr??bner bases and discrete Fourier transforms for several types of algebraic codes
Author :
Matsui, H. ; Mita, S.
Author_Institution :
Toyota Technol. Inst., Nagoya
fYear :
2007
fDate :
24-29 June 2007
Firstpage :
2656
Lastpage :
2660
Abstract :
We propose a novel encoding scheme for algebraic codes such as codes on algebraic curves, multidimensional cyclic codes, and hyperbolic cascaded Reed-Solomon codes and present numerical examples. We employ the recurrence from the Grobner basis of the locator ideal for a set of rational points and the two- dimensional inverse discrete Fourier transform. We generalize the functioning of the generator polynomial for Reed-Solomon codes and develop systematic encoding for various algebraic codes.
Keywords :
Reed-Solomon codes; algebraic codes; cyclic codes; discrete Fourier transforms; encoding; inverse problems; 2D inverse discrete Fourier transform; Grobner bases; algebraic codes; algebraic curves; encoding; hyperbolic cascaded Reed-Solomon codes; multidimensional cyclic codes; Decoding; Discrete Fourier transforms; Encoding; Equations; Feedback; Information science; Linear code; Multidimensional systems; Reed-Solomon codes; Two dimensional displays;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2007. ISIT 2007. IEEE International Symposium on
Conference_Location :
Nice
Print_ISBN :
978-1-4244-1397-3
Type :
conf
DOI :
10.1109/ISIT.2007.4557619
Filename :
4557619
Link To Document :
بازگشت