Title :
A Novel Genetic Simulated Annealing Algorithm for the Resource-Constrained Project Scheduling Problem
Author :
Yu Xiaoguang ; Zhan Dechen ; Nie Lanshun ; Xu Xiaofei
Author_Institution :
Sch. of Comput. Sci. & Technol., Harbin Inst. of Technol., Harbin
Abstract :
A novel hybrid meta-heuristic algorithm, entitled as RCPSPGSA, is proposed for solving the resource-constrained project scheduling problem (RCPSP) in this paper. The algorithm incorporates the simulated annealing algorithm (SA) into genetic algorithm in order to improve local searching performance and boost up evolution capability. In each evolution iteration GA generates a new temporary population, and after that SA is used for improving every individual in it and at the mean time the next gap population is generated. For the sake of keeping the same convergence direction and speed of GA and SA, the cooling procedure occurs at the end of each evolution iteration. Simulation experiments are performed on the standard project instance sets of PSPLIB, and orthogonal experiment method is introduced to solve the parameter selection problem. Parameter combinations selected by this method are proved to be outperformed. Experimental results show that RCPSPGSA improves solution quality for J30, J60, J90 sets and not bad for J120.
Keywords :
genetic algorithms; iterative methods; project management; scheduling; search problems; simulated annealing; RCPSPGSA; evolution capability; genetic simulated annealing algorithm; hybrid metaheuristic algorithm; local searching performance; parameter selection problem; resource-constrained project scheduling problem; Ant colony optimization; Computational modeling; Computer science; Computer simulation; Convergence; Cooling; Genetic algorithms; Processor scheduling; Scheduling algorithm; Simulated annealing;
Conference_Titel :
Intelligent Systems and Applications, 2009. ISA 2009. International Workshop on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-3893-8
Electronic_ISBN :
978-1-4244-3894-5
DOI :
10.1109/IWISA.2009.5072661