DocumentCode :
2032684
Title :
DTN MapEx: Disaster area mapping through distributed computing over a Delay Tolerant Network
Author :
Trono, Edgar Marko ; Arakawa, Yutaka ; Tamai, Morihiko ; Yasumoto, Keiichi
Author_Institution :
Grad. Sch. of Inf. Sci., Nara Inst. of Sci. & Technol., Ikoma, Japan
fYear :
2015
fDate :
20-22 Jan. 2015
Firstpage :
179
Lastpage :
184
Abstract :
Disaster area map generation and sharing are critical to disaster response operations. In post-disaster contexts however, cloud-based mapping services and data may be unavailable because of network challenges. Disruption Tolerant Network (DTN) architectures have been proposed for data sharing in challenged networks. However, map generation may be too complex for individual DTN nodes given their limited computing resources. To generate and share maps of disaster areas, we present DTN MapEx, a distributed computing system for mapping that operates over a DTN. DTN MapEx distributes disaster map data and map generation tasks to multiple nodes to minimize individual computational loads. In the system, responders and volunteers act as mobile sensing nodes. They log the GPS traces of their traversed paths and collect disaster area map data such as the coordinates, images, and assessments of points-of-interest. The mobile nodes then route their collected data and a task request through the DTN to pre-deployed, fixed Computing Nodes. The Computing Nodes aggregate the data to generate a map and opportunistically route it back to the network. To reduce complexity, mapping tasks and data are divided amongst Computing Nodes based on their current computational load. Computing Nodes periodically update the DTN about their current loads. Mobile nodes use these updates in deciding where to allocate their task requests and data. In this paper, we present the design of DTN MapEx and perform initial evaluations on its feasibility in disaster scenarios.
Keywords :
Global Positioning System; delay tolerant networks; emergency management; mobile computing; resource allocation; DTN MapEx; DTN architecture; DTN node; GPS traces; cloud-based mapping service; computing nodes; computing resource; data sharing; delay tolerant network; disaster area map data; disaster area map generation; disaster area mapping; disaster map data; disaster response operation; disruption tolerant network architecture; distributed computing system; map generation task; mobile node; mobile sensing node; post-disaster context; request allocation; Delays; Global Positioning System; Mobile nodes; Peer-to-peer computing; Sensors; Delay Tolerant Network; Disaster Management; Distributed Computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Mobile Computing and Ubiquitous Networking (ICMU), 2015 Eighth International Conference on
Conference_Location :
Hakodate
Type :
conf
DOI :
10.1109/ICMU.2015.7061063
Filename :
7061063
Link To Document :
بازگشت