Title :
A Tutorial on Bernoulli Filters: Theory, Implementation and Applications
Author :
Ristic, Branko ; Ba-Tuong Vo ; Ba-Ngu Vo ; Farina, A.
Author_Institution :
ISR Div., Defence Sci. & Technol. Organ., Melbourne, VIC, Australia
Abstract :
Bernoulli filters are a class of exact Bayesian filters for non-linear/non-Gaussian recursive estimation of dynamic systems, recently emerged from the random set theoretical framework. The common feature of Bernoulli filters is that they are designed for stochastic dynamic systems which randomly switch on and off. The applications are primarily in target tracking, where the switching process models target appearance or disappearance from the surveillance volume. The concept, however, is applicable to a range of dynamic phenomena, such as epidemics, pollution, social trends, etc. Bernoulli filters in general have no analytic solution and are implemented as particle filters or Gaussian sum filters. This tutorial paper reviews the theory of Bernoulli filters as well as their implementation for different measurement models. The theory is backed up by applications in sensor networks, bearings-only tracking, passive radar/sonar surveillance, visual tracking, monitoring/prediction of an epidemic and tracking using natural language statements. More advanced topics of smoothing, multi-target detection/tracking, parameter estimation and sensor control are briefly reviewed with pointers for further reading.
Keywords :
belief networks; passive radar; radar tracking; recursive estimation; search radar; target tracking; exact Bayesian filters; nonlinear/nonGaussian recursive estimation; passive radar; random set theoretical framework; sensor networks; sonar surveillance; stochastic dynamic systems; target appearance; target tracking; visual tracking; Particle filters; random sets; sequential Bayesian estimation; target tracking;
Journal_Title :
Signal Processing, IEEE Transactions on
DOI :
10.1109/TSP.2013.2257765