Title :
Stability analysis of VSC MTDC grids connected to multimachine ac systems
Author :
Chaudhuri, N.R. ; Majumder, R. ; Chaudhuri, B.
Abstract :
Summary form only given. Interaction between multimachine ac systems and a multiterminal dc (MTDC) grid and the impact on the overall stability of the combined ac-MTDC system is studied in this paper. A generic modeling framework for voltage-source converter (VSC) - based MTDC grids, which is compatible with standard multimachine ac system models, is developed to carry out modal analysis and transient simulation. A general asymmetric bipole converter configuration comprising positive and negative pole converters and dc cable network with a positive, negative, and metallic return circuit is considered to enable different types of faults and dc-side unbalance studies. Detailed dynamic representation of the dc cables with distributed pi-section models is used along with the averaged model and decoupled control for the converter stations. An averaged model in Matlab/SIMULINK is validated against the detailed switched model in EMTDC/PSCAD by comparing the responses following small and large disturbances (e.g., faults on the dc side). Modal analysis is performed to identify the nature and root cause of the dynamic responses. Interaction between a multimachine ac system and an MTDC grid is examined following faults on the ac and dc sides and outage of converters. It is shown that the cause of instability in certain cases could only be attributed to the dc-side state variables. An averaged model of the converter along with the dc cable network is shown to be essential to analyze the stability and dynamics of combined ac-MTDC grids.
Keywords :
modal analysis; power cables; power convertors; power grids; power system faults; power system transient stability; EMTDC-PSCAD; Matlab-Simulink; VSC MTDC grids; asymmetric bipole converter configuration; combined ac-MTDC system; converter stations; dc cable network; dc-side state variables; decoupled control; distributed pi-section models; metallic return circuit; modal analysis; multimachine AC system model; multiterminal DC grid; negative pole converters; positive pole converters; stability analysis; switched model; transient simulation; voltage-source converter; Analytical models; Circuit faults; Circuit stability; Integrated circuit modeling; Power conversion; Stability analysis;
Conference_Titel :
Power and Energy Society General Meeting, 2012 IEEE
Conference_Location :
San Diego, CA
Print_ISBN :
978-1-4673-2727-5
Electronic_ISBN :
1944-9925
DOI :
10.1109/PESGM.2012.6344647