Title :
Making lockless synchronization fast: performance implications of memory reclamation
Author :
Hart, Thomas E. ; McKenney, Paul E. ; Brown, Angela Demke
Author_Institution :
Dept. of Comput. Sci., Toronto Univ., Ont.
Abstract :
Achieving high performance for concurrent applications on modern multiprocessors remains challenging. Many programmers avoid locking to improve performance, while others replace locks with non-blocking synchronization to protect against deadlock, priority inversion, and convoying. In both cases, dynamic data structures that avoid locking, require a memory reclamation scheme that reclaims nodes once they are no longer in use. The performance of existing memory reclamation schemes has not been thoroughly evaluated. We conduct the first fair and comprehensive comparison of three recent schemes -quiescent-state-based reclamation, epoch-based reclamation, and hazard-pointer-based reclamation - using a flexible microbenchmark. Our results show that there is no globally optimal scheme. When evaluating lockless synchronization, programmers and algorithm designers should thus carefully consider the data structure, the workload, and the execution environment, each of which can dramatically affect memory reclamation performance
Keywords :
concurrency control; data structures; multiprocessing systems; storage management; synchronisation; concurrent application; dynamic data structure; epoch-based reclamation; hazard-pointer-based reclamation; lockless synchronization; memory reclamation; microbenchmark; multiprocessor; quiescent-state-based reclamation; Algorithm design and analysis; Application software; Computer science; Content addressable storage; Data structures; Linux; Programming profession; Protection; System recovery; Yarn;
Conference_Titel :
Parallel and Distributed Processing Symposium, 2006. IPDPS 2006. 20th International
Conference_Location :
Rhodes Island
Print_ISBN :
1-4244-0054-6
DOI :
10.1109/IPDPS.2006.1639261