DocumentCode :
2041233
Title :
Using ants as a genetic crossover operator in GLS to solve STSP
Author :
Ismkhan, Hassan ; Zamanifar, Kamran
Author_Institution :
Comput. Dept., Univ. of Isfahan, Isfahan, Iran
fYear :
2010
fDate :
7-10 Dec. 2010
Firstpage :
344
Lastpage :
348
Abstract :
Ant Colony Algorithm (ACA) and Genetic Local Search (GLS) are two optimization algorithms that have been successfully applied to the Traveling Salesman Problem (TSP). In this paper we define new crossover operator then redefine ACA´s ants as operate according to defined crossover operator then put forward our GLS that uses these ants to solve Symmetric TSP (STSP) instances.
Keywords :
genetic algorithms; search problems; travelling salesman problems; ACA; GLS; STSP; TSP; ant colony algorithm; genetic crossover operator; genetic local search; optimization algorithms; symmetric TSP; traveling salesman problem; Arrays; Cities and towns; Classification algorithms; Conferences; Genetics; Search problems; Traveling salesman problems; ACA; GLS; Heuristic crossover; Local search;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Soft Computing and Pattern Recognition (SoCPaR), 2010 International Conference of
Conference_Location :
Paris
Print_ISBN :
978-1-4244-7897-2
Type :
conf
DOI :
10.1109/SOCPAR.2010.5686165
Filename :
5686165
Link To Document :
بازگشت