DocumentCode :
2046654
Title :
Costas permutations in the continuum
Author :
Drakakis, Konstantinos ; Rickard, Scott
Author_Institution :
Sch. of Math. & UCD CASL, Univ. Coll. Dublin, Dublin
fYear :
2008
fDate :
19-21 March 2008
Firstpage :
1228
Lastpage :
1233
Abstract :
We extend the definition of the Costas property to functions in the continuum, namely on intervals of the reals or the rationals, and argue that such functions can be used in the same applications as discrete Costas arrays. We construct Costas bijections in the real continuum within the class of piecewise continuously differentiable functions; over the rationals we propose a non-smooth construction of great generality and flexibility whose success, though, relies heavily on their enumerability, and therefore cannot be generalized over the reals in an obvious way.
Keywords :
array signal processing; statistics; Costas bijections; Costas permutations; discrete Costas arrays; piecewise continuously differentiable function; real continuum; Autocorrelation; Cost benefit analysis; Educational institutions; Frequency; Galois fields; Mathematics; Mechanical engineering; Mechanical factors; Radar; User centered design;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on
Conference_Location :
Princeton, NJ
Print_ISBN :
978-1-4244-2246-3
Electronic_ISBN :
978-1-4244-2247-0
Type :
conf
DOI :
10.1109/CISS.2008.4558706
Filename :
4558706
Link To Document :
بازگشت