DocumentCode :
2047064
Title :
Multivariable nonlinear smoothers as an aid for identifying models from chaotic data
Author :
Mendes, Eduardo M A M
Author_Institution :
Departamento de Eletricidade, FUNREI, Sao Joao Del Rei, Brazil
Volume :
2
fYear :
2002
fDate :
2002
Firstpage :
951
Abstract :
Addresses the use of global multivariable smoothers for noise reduction of chaotic data so to as to aid the identification of dynamically valid models. Issues such as prediction, applicability of the proposed method and observed noise are briefly discussed.
Keywords :
autoregressive moving average processes; chaos; identification; iterative methods; noise; prediction theory; smoothing methods; chaotic data; dynamically valid models; linear identification; model identification; multivariable nonlinear smoothers; noise reduction; structure detection; Chaos; Filtering; Fractals; Noise reduction; Orbits; Phase detection; Phase noise; Smoothing methods; Solid modeling; State-space methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2002. Proceedings of the 2002
ISSN :
0743-1619
Print_ISBN :
0-7803-7298-0
Type :
conf
DOI :
10.1109/ACC.2002.1023140
Filename :
1023140
Link To Document :
بازگشت