DocumentCode :
2047357
Title :
Maximum likelihood dosage estimation for Bayesian transmission tomography
Author :
Sauer, Ken D. ; Bouman, Charles A.
Author_Institution :
Dept. of Electr. Eng., Notre Dame Univ., IN, USA
Volume :
2
fYear :
1994
fDate :
13-16 Nov 1994
Firstpage :
844
Abstract :
Bayesian reconstruction and restoration methods require the choice of parameters related to variance in both stochastic image models and observed data. In practice these parameters, or their ratio, is often chosen heuristically. The authors present a method for joint maximum-likelihood (ML) estimation of these two parameters in transmission tomography, with emphasis on the X-ray/γ-ray dosage parameter. The estimation algorithm employs the expectation-maximization method, with the unobserved image as the complete data. The ML parameter estimator is shown to yield values which are practical for tomographic reconstruction, both with synthetic phantoms and real data
Keywords :
Bayes methods; X-ray imaging; computerised tomography; dosimetry; gamma-ray applications; image restoration; maximum likelihood estimation; nondestructive testing; γ-ray dosage parameter; Bayesian transmission tomography; X-ray dosage parameter; estimation algorithm; expectation-maximization method; joint maximum-likelihood estimation; maximum likelihood dosage estimation; parameter estimator; reconstruction; restoration; stochastic image models; synthetic phantoms; Bayesian methods; Image reconstruction; Image restoration; Imaging phantoms; Maximum likelihood estimation; Parameter estimation; Stochastic processes; Tomography; X-ray imaging; Yield estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference
Conference_Location :
Austin, TX
Print_ISBN :
0-8186-6952-7
Type :
conf
DOI :
10.1109/ICIP.1994.413474
Filename :
413474
Link To Document :
بازگشت