DocumentCode :
20480
Title :
Thermal Analysis of LED Lamps for Optimal Driver Integration
Author :
Perpina, Xavier ; Werkhoven, Robert J. ; Vellvehi, Miquel ; Jakovenko, Jiri ; Jorda, Xavier ; Kunen, Jos M. G. ; Bancken, Peter ; Bolt, Pieter J.
Author_Institution :
Inst. de Microelectron. de Barcelona IMB, Univ. Autonoma de Barcelona, Bellaterra, Spain
Volume :
30
Issue :
7
fYear :
2015
fDate :
Jul-15
Firstpage :
3876
Lastpage :
3891
Abstract :
This paper studies the thermal influence of a light-emitting diode (LED) driver on a retrofit LED lamp, also reporting on a procedure for its thermal characterization and multiscale modeling. In this analysis, temperature is measured by infrared thermography and monitoring specific locations with thermocouples. Experimental results point out that temperature increases considerably in all lamp parts when the driver is installed in the lamp (up to 15% for LED board). The multiscale simulation approach is set with thermal parameters (thermal conductivity, emissivity, and LED board thermal resistance) measured from several parts of the lamp, reaching an agreement between experiment and simulation smaller than 10%. With this model, the driver temperature is investigated under operational conditions accounting for two alternative thermal designs. First, the driver is completely surrounded with a filling material (air completely removed, Case A), and, second, only the thermal contact between the board and the lamp is improved (air is kept, Case B). In both cases, the heat removal from the driver to the ambient by conduction is enhanced, observing that temperature decreases in its most heated components up to 10 °C in Case A, and up to 7 °C in Case B.
Keywords :
LED lamps; infrared imaging; thermal analysis; thermal conductivity; thermal resistance; thermocouples; LED board; LED board thermal resistance; filling material; infrared thermography; light-emitting diode driver; multiscale simulation approach; optimal driver integration; retrofit LED lamp; temperature 10 C; temperature 7 C; thermal analysis; thermal characterization; thermal contact; thermal designs; thermocouples; Face; Heating; Light emitting diodes; Materials; Reliability; Temperature measurement; Thermal conductivity; Light-emitting diodes (LEDs); SSL drivers; solid-state lighting (SSL); thermal modeling; thermal parameters extraction;
fLanguage :
English
Journal_Title :
Power Electronics, IEEE Transactions on
Publisher :
ieee
ISSN :
0885-8993
Type :
jour
DOI :
10.1109/TPEL.2014.2346543
Filename :
6874576
Link To Document :
بازگشت