Title : 
Mapping Verbal Argument Preferences to Deverbals
         
        
            Author : 
Gurevich, Olga ; Waterman, Scott A.
         
        
            Author_Institution : 
Microsoft / Powerset, San Francisco, CA, USA
         
        
        
        
        
        
            Abstract : 
We describe an experiment mapping semantic role preferences for transitive verbs to their deverbal nominal forms. The preferences are learned by data mining large parsed corpora. Preferences are modeled for deverbal/argument pairs, falling back to a model for the deverbal alone when sufficient data is not available. Errors in role assignment are reduced by 35%.
         
        
            Keywords : 
computational linguistics; data mining; grammars; natural language processing; data mining; deverbal nominal forms; deverbal pairs; large parsed corpora; semantic role preference mapping; transitive verbs; verbal argument preference mapping; Data mining; Humans; Internet; Knowledge based systems; Natural language processing; Predictive models; Speech; Training data; USA Councils; Wikipedia; data mining; deverbal nouns; natural language processing; semantic role labeling;
         
        
        
        
            Conference_Titel : 
Semantic Computing, 2009. ICSC '09. IEEE International Conference on
         
        
            Conference_Location : 
Berkeley, CA
         
        
            Print_ISBN : 
978-1-4244-4962-0
         
        
            Electronic_ISBN : 
978-0-7695-3800-6
         
        
        
            DOI : 
10.1109/ICSC.2009.88