DocumentCode :
2052753
Title :
Electrorheologic Liquid Crystals in Microsystems: Model and Measurements
Author :
De Volder, Michaël ; Yoshida, Kazuhiro ; Yokota, Shinichi ; Reynaerts, Dominiek
Author_Institution :
Dept. of Mech. Eng., Katholieke Univ. Leuven
fYear :
2006
fDate :
18-21 Jan. 2006
Firstpage :
236
Lastpage :
241
Abstract :
Fluids with a controllable viscosity gained a lot of interest throughout the last years. One of the advantages of these fluids is that they allow to fabricate hydraulic components such as valves with a very simple structure. Although the properties of these fluids are very interesting for microsystems, their applicability is limited at microscale since the particles suspended in these fluids tend to obstruct microchannels. This paper investigates the applicability of electrorheologic liquid crystals (LC´s) in microsystems. Since LC´s do not contain suspended particles, they show intrinsic advantages over classic rheologic active fluids in microapplications. As a matter of fact, LC molecules are usually only a few nanometers long, and therefore, they can probably be used in systems with sub-micrometer channels or other nanoscale applications. This paper presents a novel model describing the electrorheologic behavior of these nanoscale molecules. This model is used to simulate a microvalve controlled by LC´s. By comparing measurements and simulations performed on this microvalve it is possible to prove that the model developed in this paper is very accurate. In addition, these simulations and measurements revealed other remarkable properties of LC´s, such as high bandwidths and high changes in flow resistance
Keywords :
electrorheology; liquid crystals; microvalves; viscosity; electrorheologic liquid crystals microsystems; flow resistance; microapplication; microchannels; microvalve; nanoscale application; rheologic active fluids; viscosity; Bandwidth; Electrical resistance measurement; Fluid flow measurement; Liquid crystals; Microchannel; Microvalves; Performance evaluation; Rheology; Valves; Viscosity; electrorheology; liquid crystals; microvalves;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Nano/Micro Engineered and Molecular Systems, 2006. NEMS '06. 1st IEEE International Conference on
Conference_Location :
Zhuhai
Print_ISBN :
1-4244-0139-9
Electronic_ISBN :
1-4244-0140-2
Type :
conf
DOI :
10.1109/NEMS.2006.334694
Filename :
4134942
Link To Document :
بازگشت