DocumentCode :
2055045
Title :
Nonasymptotic upper bounds on the probability of the ε-atypical set for Markov chains
Author :
Lastras-Montaño, Luis A.
Author_Institution :
IBM Thomas J. Watson Res. Center, Yorktown Heights, NY, USA
fYear :
2004
fDate :
27 June-2 July 2004
Firstpage :
222
Abstract :
For a stationary, irreducible and aperiodic Markov chain with finite alphabet A, starting symbol X0=σ, transition probability matrix P, stationary distribution π, support S(π,P)={(j,k):πjPk|j>0} and for a function f such that M=ΔEπPf(X1,X2)<+∞ it is known that limsupl→∞ 1/l log2 μ(|M-1/l Σ>i=1lf(Xi-1,Xi)|≥ε)≤-inf(q,Q)∈Γ(e) D(Q||P), where Γε={(q,Q):|Eπ,Pf(X1,X2q,Qf(X1,X2)|≥ε Qq=q,S(q,Q)⊂S(π,P)}. In this paper we demonstrate that inf(q,Q)∈Γ(e) D(Q||P)≥ 1/(2ln2)[supn≥1:Kn>0{Kn/(1+Kn)}ε/(maxj,k:P(k|j)>0|f(j,k)|]2 where Kn=(1-|A|maxj,k|Pk|jnk)/n). Under the conditions stated, the set over which the sup is taken is nonempty and therefore the sup exists and is positive; it is also shown that the sup is attained at a finite value of n. A nonasymptotic version of this result is also given based on the method of Markov types.
Keywords :
Markov processes; matrix algebra; probability; aperiodic Markov chain; finite alphabet; nonasymptotic upper bound; stationary distribution; transition probability matrix; Algorithm design and analysis;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
Print_ISBN :
0-7803-8280-3
Type :
conf
DOI :
10.1109/ISIT.2004.1365260
Filename :
1365260
Link To Document :
بازگشت