DocumentCode :
2055889
Title :
Optimal versus randomized search of fixed length words
Author :
Prodinger, Helmut ; Szpankowski, Wojciech
Author_Institution :
Sch. of Math., Univ. of the Witwatersrand, South Africa
fYear :
2002
fDate :
2002
Firstpage :
205
Abstract :
A combinatorial search problem can be defined as follows: Given a set W={w 1, w2,..., wm} of m words over a (binary) alphabet Σ, design a sequence of tests that successfully find the word w* ∈ W being sought. The prime goal of the optimal search is to find the sought word w* with the smallest maximum or average search time. Here, we deal with a randomly selected set W of m binary words of fixed length n, that is, the set W={w1,... wm} is chosen with equal probability among all possible subsets of size m.
Keywords :
combinatorial mathematics; information theory; optimisation; search problems; binary words; combinatorial search problem; fixed length words; optimal search; optimal trie; randomized search; Africa; Computer science; Contracts; Fluctuations; Mathematics; Search problems; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory, 2002. Proceedings. 2002 IEEE International Symposium on
Print_ISBN :
0-7803-7501-7
Type :
conf
DOI :
10.1109/ISIT.2002.1023477
Filename :
1023477
Link To Document :
بازگشت