DocumentCode :
2060360
Title :
Semantic Models for Style-Based Text Clustering
Author :
Leoncini, Alessio ; Sangiacomo, Fabio ; Peretti, Chiara ; Argentesi, Sonia ; Zunino, Rodolfo ; Cambria, Erik
Author_Institution :
Dept. of Biophys. & Electron. Eng., Univ. of Genoa, Genoa, Italy
fYear :
2011
fDate :
18-21 Sept. 2011
Firstpage :
75
Lastpage :
82
Abstract :
The paper addresses some roles of concept-based representations in document clustering to support knowledge discovery. Computational Intelligence algorithms can benefit from semantic networks in the definition of similarity between pairs of documents. After analyzing the tuning of semantic networks in a systematic fashion, the research defines and evaluates a novel semantic-based metrics, which integrates both classical and style-related features of texts. Experimental results confirm the effectiveness of the approach, showing that applying a refined semantic representation into a clustering engine yields consistent structures for information retrieval and knowledge acquisition.
Keywords :
data mining; information retrieval; pattern clustering; semantic networks; text analysis; clustering engine; computational intelligence algorithms; concept-based representations; document clustering; information retrieval; knowledge acquisition; knowledge discovery; refined semantic representation; semantic models; semantic networks; semantic-based metrics; style-based text clustering; Clustering algorithms; Computational modeling; Engines; Measurement; Ontologies; Semantics; Text mining; Kernel K-Means; Multilingual Document Clustering; Semantic Text Clustering; Text Mining; WordNet;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Semantic Computing (ICSC), 2011 Fifth IEEE International Conference on
Conference_Location :
Palo Alto, CA
Print_ISBN :
978-1-4577-1648-5
Electronic_ISBN :
978-0-7695-4492-2
Type :
conf
DOI :
10.1109/ICSC.2011.24
Filename :
6061439
Link To Document :
بازگشت