DocumentCode :
2061249
Title :
Sill Image Object Categorization Using 2D Objects Models
Author :
Petre, Raluca-Diana ; Zaharia, Titus
Author_Institution :
ARTEMIS Dept., TELECOM SudParis, Evry, France
fYear :
2011
fDate :
18-21 Sept. 2011
Firstpage :
419
Lastpage :
423
Abstract :
This paper proposes a novel recognition scheme for semantic labeling of 2D objects present in still images. The principle consists of matching unknown 2D objects with categorized 3D models in order to associate the semantics of the 3D object to the image. We tested our new recognition framework by using the MPEG-7 and Princeton 3D model databases in order to label unknown images randomly selected from the web. Experiments show that such a system can achieve recognition rate up to 70.4%.
Keywords :
image matching; image retrieval; object recognition; video coding; 2D object matching; 2D object model; MPEG-7; Princeton 3D model database; recognition scheme; semantic labeling; still image object categorization; Indexing; Object recognition; Shape; Solid modeling; Three dimensional displays; Transform coding; 2D and 3D shape descriptors; 2D/3D indexing; indexing and retrieval; object classification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Semantic Computing (ICSC), 2011 Fifth IEEE International Conference on
Conference_Location :
Palo Alto, CA
Print_ISBN :
978-1-4577-1648-5
Electronic_ISBN :
978-0-7695-4492-2
Type :
conf
DOI :
10.1109/ICSC.2011.22
Filename :
6061470
Link To Document :
بازگشت