Title :
The cross-entropy method for blind multiuser detection
Author :
Liu, Zaifei ; Doucet, Arnaud ; Singh, Sumeetpal S.
Author_Institution :
Dept. of Eng., Cambridge Univ., UK
fDate :
27 June-2 July 2004
Abstract :
We consider the problem of blind multiuser detection. We adopt a Bayesian approach where unknown parameters are considered random and integrated out. Computing the maximum a posteriori estimate of the input data sequence requires solving a combinatorial optimization problem. We propose here to apply the Cross-Entropy method recently introduced by Rubinstein. The performance of cross-entropy is compared to Markov chain Monte Carlo. For similar Bit Error Rate performance, we demonstrate that Cross-Entropy outperforms a generic Markov chain Monte Carlo method in terms of operation time.
Keywords :
Bayes methods; Markov processes; Monte Carlo methods; combinatorial mathematics; error statistics; maximum likelihood estimation; minimum entropy methods; multiuser detection; optimisation; Bayesian approach; Monte Carlo method; bit error rate; blind multiuser detection; combinatorial optimization problem; cross-entropy method; generic Markov chain; input data sequence; maximum a posteriori estimation; Bayesian methods; Bit error rate; Detectors; Maximum a posteriori estimation; Monte Carlo methods; Multiuser detection; Signal processing; Signal processing algorithms; Smoothing methods; Wireless communication;
Conference_Titel :
Information Theory, 2004. ISIT 2004. Proceedings. International Symposium on
Print_ISBN :
0-7803-8280-3
DOI :
10.1109/ISIT.2004.1365547