DocumentCode :
2064465
Title :
Hydrodynamic 2D simulation of InP/InGaAs DHBT
Author :
Ruiz-Palmero, J.M. ; Schnyder, Iwan ; Jäckel, Heinz
Author_Institution :
Electron. Lab., Swiss Fed. Inst. of Technol., Zurich, Switzerland
fYear :
2004
fDate :
13-14 Sept. 2004
Firstpage :
152
Lastpage :
155
Abstract :
Accurate fully thermal hydrodynamic 2D simulations of InP/InGaAs(P) double heterojunction bipolar transistors (DHBTs) are necessary for optimizing the HBT further towards +100 Gb/s circuits. Extrapolated parameters as mobilities, energy relaxation times, the thermal diffusion and other energy transport parameters from homogeneous Monte Carlo simulations of bulk InP and InGaAs are used for the Stratton hydrodynamic model. The simulations are further improved by a new doping dependent mobility model and taking into account thermionic emission over heterojunctions, band gap narrowing, and SRH (Shockley Read Hall) as well as radiative and Auger recombinations. Good agreement between measured and simulated output characteristics, unity current gain frequencies fT and maximum oscillation frequencies fmax of actual very high speed InP/InGaAs(P) DHBTs are achieved.
Keywords :
III-V semiconductors; Monte Carlo methods; carrier mobility; carrier relaxation time; electrohydrodynamics; electron-hole recombination; gallium arsenide; heterojunction bipolar transistors; indium compounds; semiconductor device models; thermal diffusion; thermionic emission; 100 Gbit/s; Auger recombinations; DHBT hydrodynamic 2D simulation; HBT; InP-InGaAs; SRH; Shockley Read Hall; Stratton hydrodynamic model; band gap narrowing; carrier mobilities; doping dependent mobility; double heterojunction bipolar transistors; energy relaxation times; energy transport parameters; heterojunction thermionic emission; homogeneous Monte Carlo simulations; maximum oscillation frequencies; radiative recombinations; thermal diffusion; thermal hydrodynamic simulation; Circuit simulation; DH-HEMTs; Doping; Double heterojunction bipolar transistors; Frequency; Heterojunction bipolar transistors; Hydrodynamics; Indium gallium arsenide; Indium phosphide; Semiconductor process modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Bipolar/BiCMOS Circuits and Technology, 2004. Proceedings of the 2004 Meeting
Print_ISBN :
0-7803-8618-3
Type :
conf
DOI :
10.1109/BIPOL.2004.1365767
Filename :
1365767
Link To Document :
بازگشت