DocumentCode :
2070906
Title :
Empirical study of a stacking state-space
Author :
Ledezma, Agapito ; Aler, Ricardo ; Borrajo, Daniel
Author_Institution :
Univ. Carlos III de Madrid, Spain
fYear :
2001
fDate :
7-9 Nov 2001
Firstpage :
210
Lastpage :
217
Abstract :
Nowadays, there is no doubt that machine learning techniques can be successfully applied to data mining tasks. Currently, the combination of several classifiers is one of the most active fields within inductive machine learning. Examples of such techniques are boosting, bagging and stacking. From these three techniques, stacking is perhaps the less used one. One of the main reasons for this relates to the difficulty to define and parameterize its components: selecting which combination of base classifiers to use, and which classifier to use as the meta-classifier. One could use for that purpose simple search methods (e.g. hill climbing), or more complex ones (e.g. genetic algorithms). But before search is attempted, it is important to know the properties of the search space itself. In this paper we study exhaustively the space of stacking systems that can be built by using four base learning systems: C4.5, IB1, Naive Bayes, and PART. The results that have been obtained in this paper will be useful for designing new Stacking-based algorithms and tools
Keywords :
data mining; learning (artificial intelligence); C4.5; IBl; Naive Bayes; PART; bagging; base classifiers; boosting; data mining; hill climbing; inductive machine learning; machine learning; search methods; stacking; stacking state-space; Algorithm design and analysis; Bagging; Boosting; Data mining; Genetic algorithms; Learning systems; Machine learning; Machine learning algorithms; Stacking; Voting;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Tools with Artificial Intelligence, Proceedings of the 13th International Conference on
Conference_Location :
Dallas, TX
Print_ISBN :
0-7695-1417-0
Type :
conf
DOI :
10.1109/ICTAI.2001.974467
Filename :
974467
Link To Document :
بازگشت