DocumentCode :
2078340
Title :
Decoding algebraic geometric codes
Author :
Shokrollahi, M. Amin ; Wasserman, Hal
Author_Institution :
Int. Comput. Sci. Inst., Berkeley, CA, USA
fYear :
1998
fDate :
22-26 Jun 1998
Firstpage :
40
Lastpage :
41
Abstract :
We present a new algorithm for decoding AG-codes significantly beyond the error-correction bound. Specifically, given a word y whose distance to the AG-code is at most e, where e is a parameter depending on the block length and the dimension of the code, our algorithm produces all codewords that have distance ⩽e from y. We also discuss modifications of our general algorithm and show how to obtain similar algorithms for binary codes using concatenated codes
Keywords :
algebraic geometric codes; binary codes; concatenated codes; decoding; error correction codes; algebraic geometric codes; binary codes; block length; code dimension; concatenated codes; decoding; error-correction bound; Algorithm design and analysis; Binary codes; Computer errors; Computer science; Concatenated codes; Decoding; Error correction codes; Galois fields; Hamming distance; Reed-Solomon codes;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Theory Workshop, 1998
Conference_Location :
Killarney
Print_ISBN :
0-7803-4408-1
Type :
conf
DOI :
10.1109/ITW.1998.706403
Filename :
706403
Link To Document :
بازگشت