DocumentCode :
2081511
Title :
Large-scale Learning with SVM and Convolutional for Generic Object Categorization
Author :
Huang, Fu Jie ; LeCun, Yann
Author_Institution :
New York University, New York, NY, USA
Volume :
1
fYear :
2006
fDate :
17-22 June 2006
Firstpage :
284
Lastpage :
291
Abstract :
The detection and recognition of generic object categories with invariance to viewpoint, illumination, and clutter requires the combination of a feature extractor and a classifier. We show that architectures such as convolutional networks are good at learning invariant features, but not always optimal for classification, while Support Vector Machines are good at producing decision surfaces from wellbehaved feature vectors, but cannot learn complicated invariances. We present a hybrid system where a convolutional network is trained to detect and recognize generic objects, and a Gaussian-kernel SVM is trained from the features learned by the convolutional network. Results are given on a large generic object recognition task with six categories (human figures, four-legged animals, airplanes, trucks, cars, and "none of the above"), with multiple instances of each object category under various poses, illuminations, and backgrounds. On the test set, which contains different object instances than the training set, an SVM alone yields a 43.3% error rate, a convolutional net alone yields 7.2% and an SVM on top of features produced by the convolutional net yields 5.9%.
Keywords :
Feature extraction; Gaussian processes; Humans; Large-scale systems; Lighting; Machine learning; Object detection; Object recognition; Support vector machine classification; Support vector machines;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
ISSN :
1063-6919
Print_ISBN :
0-7695-2597-0
Type :
conf
DOI :
10.1109/CVPR.2006.164
Filename :
1640771
Link To Document :
بازگشت