DocumentCode :
2081587
Title :
Nonlinear predictive control based on a global model identified off-line
Author :
Peng, H. ; Ozaki, T. ; Toyoda, Yoshiaki ; Haggan-Ozaki, V.
Author_Institution :
Coll. of Inf. Eng., Central South Univ., Changsha, China
Volume :
5
fYear :
2002
fDate :
2002
Firstpage :
4197
Abstract :
A model predictive control (MPC) strategy for the non-stationary nonlinear systems with operating point-dependent dynamics is presented. The MPC proposed does not require on-line parameters estimation, because its internal model is an off-line identified global (RBF-ARX.) model, which is a generalized ARX model with Gaussian radial basis function networks-based functional coefficients. The RBF-ARX model parameters are estimated using a quickly-convergent structured nonlinear parameter optimization method (SNPOM). The quadratic programming routines may be used to solve the MPC problem with constraints. Simulation study on a chemical process shows satisfactory modeling and control performance.
Keywords :
nonlinear control systems; predictive control; quadratic programming; radial basis function networks; Gaussian radial basis function networks-based functional coefficients; chemical process; generalized ARX model; global model identified offline; nonlinear predictive control; nonstationary nonlinear systems; offline identified global model; operating point dependent dynamics; parameters estimation; quadratic programming; simulation study; structured nonlinear parameter optimization method; Mathematics; Neural networks; Nonlinear dynamical systems; Nonlinear systems; Parameter estimation; Predictive control; Predictive models; Quadratic programming; Sampling methods; Time varying systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference, 2002. Proceedings of the 2002
ISSN :
0743-1619
Print_ISBN :
0-7803-7298-0
Type :
conf
DOI :
10.1109/ACC.2002.1024590
Filename :
1024590
Link To Document :
بازگشت