DocumentCode
2088231
Title
Scalable Recognition with a Vocabulary Tree
Author
Nistér, David ; Stewénius, Henrik
Author_Institution
University of Kentucky
Volume
2
fYear
2006
fDate
2006
Firstpage
2161
Lastpage
2168
Abstract
A recognition scheme that scales efficiently to a large number of objects is presented. The efficiency and quality is exhibited in a live demonstration that recognizes CD-covers from a database of 40000 images of popular music CD’s. The scheme builds upon popular techniques of indexing descriptors extracted from local regions, and is robust to background clutter and occlusion. The local region descriptors are hierarchically quantized in a vocabulary tree. The vocabulary tree allows a larger and more discriminatory vocabulary to be used efficiently, which we show experimentally leads to a dramatic improvement in retrieval quality. The most significant property of the scheme is that the tree directly defines the quantization. The quantization and the indexing are therefore fully integrated, essentially being one and the same. The recognition quality is evaluated through retrieval on a database with ground truth, showing the power of the vocabulary tree approach, going as high as 1 million images.
Keywords
Computer vision; Frequency; Image databases; Image recognition; Indexing; Quantization; Robustness; Spatial databases; Visualization; Vocabulary;
fLanguage
English
Publisher
ieee
Conference_Titel
Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
ISSN
1063-6919
Print_ISBN
0-7695-2597-0
Type
conf
DOI
10.1109/CVPR.2006.264
Filename
1641018
Link To Document