Title :
On cryptographic propagation criteria for Boolean functions
Author_Institution :
Inst. Nat. de Recherche en Inf. et Autom., Le Chesnay, France
Abstract :
We characterize those functions on GF(2)n which satisfy the propagation criterion of degree n-2. We give a general construction of nonquadratic functions satisfying the extended propagation criterion of degree l and order k, which uses the existence of nonlinear, systematic codes with good minimum distances and dual distances. We apply it to Kerdock codes and Preparata codes. We also study the other cryptographic properties of the functions obtained this way
Keywords :
Boolean functions; Galois fields; cryptography; nonlinear codes; Boolean functions; GF(2)n; Kerdock codes; Preparata codes; cryptographic propagation criteria; dual distance; minimum distance; nonlinear systematic codes; nonquadratic functions; Boolean functions; Cryptography; Hamming distance; Hamming weight; Input variables; Probability distribution;
Conference_Titel :
Information Theory Workshop, 1998
Conference_Location :
Killarney
Print_ISBN :
0-7803-4408-1
DOI :
10.1109/ITW.1998.706485