DocumentCode :
2092454
Title :
Metrics for symbol clustering from a pseudoergodic information source
Author :
Kuri-Morales, Angel Fernando ; Herrera-Alcántara, Oscar
Author_Institution :
Instituto Autonomo de Mexico, Rio Hondo, Mexico
fYear :
2003
fDate :
8-12 Sept. 2003
Firstpage :
330
Lastpage :
337
Abstract :
We discuss a set of metrics, which aim to facilitate the formation of symbol groups from a pseudoergodic information source. An optimal codification can then be applied on the symbols (such as Huffman Codes by S. JR Pierce (1980)) for aero memory sources where it tends to the theoretical limit of compression limited by the entropy. These metrics can be used as a fitness measure of the individuals in the Vasconcelos genetic algorithm as an alternative to exhaustive search.
Keywords :
data compression; entropy; entropy codes; genetic algorithms; information theory; symbol manipulation; Vasconcelos genetic algorithm; aero memory sources; entropy; exhaustive search; metrics; optimal codification; pseudoergodic information source; symbol clustering; Computer science; Data compression; Data mining; Entropy; Genetic algorithms; Genetic communication; Information theory; Nominations and elections; Probability;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science, 2003. ENC 2003. Proceedings of the Fourth Mexican International Conference on
Print_ISBN :
0-7695-1915-6
Type :
conf
DOI :
10.1109/ENC.2003.1232912
Filename :
1232912
Link To Document :
بازگشت