DocumentCode :
2095035
Title :
Website Structure Optimization Technology Based on Customer Interest Clustering Algorithm
Author :
Cheng, Shutong ; Xu, Congfu ; Dan, Hongwei
Author_Institution :
Coll. of Comput. Sci., Zhejiang Univ., Hangzhou, China
Volume :
1
fYear :
2008
fDate :
20-22 Dec. 2008
Firstpage :
802
Lastpage :
804
Abstract :
Based on an analysis on the Web log mining algorithm of predecessors, this paper presents the Web site structure optimization technology to improve customer interest. The technology proposes similar customer groups and clustering algorithms of relevant Web pages based on interest matrix of customers accessing a Web site to discover the hidden customer access patterns. Experiment results demonstrate the effectiveness of our algorithms.
Keywords :
Web sites; customer satisfaction; data mining; matrix algebra; optimisation; Web log mining algorithm; Web site structure optimization; customer access pattern; customer interest clustering algorithm; customer interest matrix; Algorithm design and analysis; Association rules; Attenuation; Clustering algorithms; Computer science; Data mining; Educational institutions; Partitioning algorithms; Uniform resource locators; Web pages; Clustering; Interest Matrix; Website Structure Optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer Science and Computational Technology, 2008. ISCSCT '08. International Symposium on
Conference_Location :
Shanghai
Print_ISBN :
978-1-4244-3746-7
Type :
conf
DOI :
10.1109/ISCSCT.2008.124
Filename :
4731545
Link To Document :
بازگشت