DocumentCode :
2095902
Title :
Sparse Coding Neural Gas for Analysis of Nuclear Magnetic Resonance Spectroscopy
Author :
Schleif, Frank-Michael ; Ongyerth, Matthias ; Villmann, Thomas
Author_Institution :
Dept. of Med., Univ. Leipzig, Leipzig
fYear :
2008
fDate :
17-19 June 2008
Firstpage :
620
Lastpage :
625
Abstract :
Nuclear magnetic resonance spectroscopy is a technique for the analysis of complex biochemical materials. Thereby the identification of known sub-patterns is important. These measurements require an accurate preprocessing and analysis to meet clinical standards. Here we present a method for an appropriate sparse encoding of NMR spectral data combined with a fuzzy classification system allowing the identification of sub-patterns including mixtures thereof. The method is evaluated in contrast to an alternative approach using simulated metabolic spectra.
Keywords :
NMR spectroscopy; fuzzy set theory; medical signal processing; complex biochemical materials; fuzzy classification system; nuclear magnetic resonance spectroscopy; simulated metabolic spectra; sparse coding neural gas; Data analysis; Decision support systems; Encoding; Magnetic analysis; Magnetic materials; Nuclear magnetic resonance; Pattern analysis; Shape; Signal analysis; Spectroscopy; data analysis; nuclear mag-data analysis; nuclear magnetic resonance; sparse coding;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computer-Based Medical Systems, 2008. CBMS '08. 21st IEEE International Symposium on
Conference_Location :
Jyvaskyla
ISSN :
1063-7125
Print_ISBN :
978-0-7695-3165-6
Type :
conf
DOI :
10.1109/CBMS.2008.39
Filename :
4562070
Link To Document :
بازگشت