Title : 
The Properties of a Class of Higher-dimensional Wavelet Packets According to an Integer-valued Dilation Matrix
         
        
            Author : 
Wang, Xiaofeng ; Lv, Baoxian
         
        
            Author_Institution : 
Dept. of Math. & Phys., Henan Univ. of Urban Constr., Pingdingshan, China
         
        
        
        
        
        
            Abstract : 
The notion of the higher-dimensional matrix-valued wavelet packets is proposed. A method for designing biorthogonal matrix-valued multivariate wavelet packets is developed and their properties are discussed by means of time-frequency analysis method and matrix theory. Three orthogonality formulas concerning these wavelet packets are obtained. One new Riesz basis of L2 (Rd, Cr à r) are constructed from these wavelet packets.
         
        
            Keywords : 
matrix algebra; time-frequency analysis; wavelet transforms; biorthogonal matrix-valued multivariate wavelet packets; higher-dimensional wavelet packets; integer-valued dilation matrix; time-frequency analysis; Design methodology; Discrete transforms; Eigenvalues and eigenfunctions; Image coding; Mathematics; Multiresolution analysis; Physics; Time frequency analysis; Wavelet analysis; Wavelet packets;
         
        
        
        
            Conference_Titel : 
Power and Energy Engineering Conference (APPEEC), 2010 Asia-Pacific
         
        
            Conference_Location : 
Chengdu
         
        
            Print_ISBN : 
978-1-4244-4812-8
         
        
            Electronic_ISBN : 
978-1-4244-4813-5
         
        
        
            DOI : 
10.1109/APPEEC.2010.5448537