DocumentCode :
2096913
Title :
6DOF entropy minimization SLAM
Author :
Sáez, Juan Manuel ; Escolano, Francisco
Author_Institution :
Departamento de Ciencia de la Computacion e Inteligencia Artificial, Alicante Univ.
fYear :
2006
fDate :
15-19 May 2006
Firstpage :
1548
Lastpage :
1555
Abstract :
In this paper, we propose and validate an entropy minimization algorithm for solving the SLAM problem in the 6DOF case with semi-sparse (stereo) data. The proposed SLAM solution relies on both an efficient and robust strategy for egomotion estimation and an effective global rectification strategy. Our global rectification method is scalable because it relies on dynamically compressing actions, in order to reduce the number of variables to optimize, and thus on integrating/fusing observations. We have implemented a wearable stereo device that runs the SLAM algorithm in real time and we have tested such implementation both in indoor and outdoor scenarios. Our experiments show that action compression is a critical element for yielding acceptable and efficient solutions to the global optimization problem in the 6DOF case
Keywords :
minimum entropy methods; motion estimation; path planning; robots; 6DOF entropy minimization SLAM; dynamically compressing actions; egomotion estimation; global optimization; global rectification strategy; Cameras; Computer vision; Entropy; Iterative algorithms; Minimization methods; Robot sensing systems; Robot vision systems; Robustness; Simultaneous localization and mapping; Stereo vision;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Robotics and Automation, 2006. ICRA 2006. Proceedings 2006 IEEE International Conference on
Conference_Location :
Orlando, FL
ISSN :
1050-4729
Print_ISBN :
0-7803-9505-0
Type :
conf
DOI :
10.1109/ROBOT.2006.1641928
Filename :
1641928
Link To Document :
بازگشت