Title :
Indirect sensorless speed control of a PMSG for wind application
Author :
Diaz, S.A. ; Silva, Céesar ; Juliet, Jorge ; Miranda, Jorge Juliet Hernán A
Author_Institution :
Electron. Eng. Dept., Univ. Tec. Federico Santa Maria, Valparaiso
Abstract :
In this paper, the sensorless control of a permanent magnet synchronous generator (PMSG) for wind turbine applications is presented. This kind of generator has many advantages, such as: high efficiency, high power density and low maintenance requirements. To improve these characteristics in the whole wind generator system a sensorless scheme is proposed, thereby avoiding problems of electromagnetic interferences and failures in the position sensor. Usually, in wind drive system, the generator is not operated a very low speeds, therefore problems related to low back-emf for flux estimation in sensorless strategies are avoided. The sensorless scheme proposed here is based on a synchronous d-q frame phase- locked loop (PLL) for back-emf estimation, as those used in voltage phase detection for grid connected converters. The wind turbine control includes maximum power point tracking (MPPT) using the method usually referred in the literature as indirect speed control (ISC). The principle of this method is the regulation of the generator torque as function of rotor speed such that the steady state operation is at the MPPT. This strategy normally requires the knowledge of the shaft speed to determinate the reference torque and rotor position for the orientation of the vector torque control of the PMSG. To achieve both, speed and position estimation, the sensorless technique based in back-emf estimation is proposed. Also in this paper, a laboratory set-up is described. The experimental bench is composed by a squirrel cage induction machine used as wind turbine emulator and the permanent magnet generator. A control program uses a simulated wind profile and gives the speed reference for the induction machine drive, considering the turbine torque production and the inertia of the system. Experimental results to verify the sensorless MPPT of the PMSG are obtained using this wind turbine emulator.
Keywords :
angular velocity control; asynchronous machines; electromagnetic interference; machine control; permanent magnet generators; rotors; squirrel cage motors; synchronous generators; wind turbines; back-emf estimation; electromagnetic interferences; flux estimation; generator torque; indirect sensorless speed control; maximum power point tracking; permanent magnet synchronous generator; phase-locked loop; squirrel cage induction machine; voltage phase detection; wind power; wind turbine emulator; Induction machines; Permanent magnets; Power generation; Rotors; Sensorless control; Synchronous generators; Torque control; Velocity control; Wind energy generation; Wind turbines;
Conference_Titel :
Electric Machines and Drives Conference, 2009. IEMDC '09. IEEE International
Conference_Location :
Miami, FL
Print_ISBN :
978-1-4244-4251-5
Electronic_ISBN :
978-1-4244-4252-2
DOI :
10.1109/IEMDC.2009.5075454