DocumentCode :
2106236
Title :
A counterexample of proof of convergence using asymptotic averaging
Author :
Powell, Thomas D. ; Wiberg, Donald M. ; Ljungquist, Dag
Author_Institution :
Dept. of Electr. Eng., California Univ., Los Angeles, CA, USA
fYear :
1993
fDate :
15-17 Dec 1993
Firstpage :
2060
Abstract :
A counterexample of convergence of a parameter estimator, the recursive prediction error method (RPEM), is presented. Here, a case where the RPEM fails to reach a minimum of the negative log likelihood function is examined. The cause of the failure of asymptotic averaging is disclosed and shown to be generic for any proof of convergence using asymptotic averaging techniques. The assumptions made in the asymptotic averaging theory proof of convergence are strengthened to assure convergence wp1 to a minimum of the asymptotic negative log likelihood function. This is illustrated by means of a simple example
Keywords :
convergence of numerical methods; differential equations; maximum likelihood estimation; parameter estimation; probability; asymptotic averaging; convergence proof; negative log likelihood function; parameter estimator; recursive prediction error method; Convergence; Differential equations; Displays; Gaussian noise; Gaussian processes; Linear systems; Noise measurement; Parameter estimation; Predictive models; Recursive estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on
Conference_Location :
San Antonio, TX
Print_ISBN :
0-7803-1298-8
Type :
conf
DOI :
10.1109/CDC.1993.325561
Filename :
325561
Link To Document :
بازگشت