DocumentCode :
2107011
Title :
Comparison schemes for discrete optimization with estimation algorithms
Author :
Gong, Wei-Bo ; Kelly, Patrick ; Zhai, Wengang
Author_Institution :
Dept. of Electr. & Comput. Eng., Massachusetts Univ., Amherst, MA, USA
fYear :
1993
fDate :
15-17 Dec 1993
Firstpage :
2211
Abstract :
Consider a discrete optimization problem where the objective function is the mean of a random variable and only samples of the random variable are available. A fundamental issue in such a problem is how to compare objective functions through the samples. Ideally, the chosen comparison scheme should lead to an algorithm whose output converges rapidly to the optimum value. In this paper the authors give some general conditions for convergence and then consider several algorithms having different comparison schemes
Keywords :
convergence; estimation theory; minimisation; nonparametric statistics; random processes; comparison scheme; convergence; discrete optimization; estimation algorithms; objective function; random variable; Contracts; Convergence; Costs; Hafnium; Iterative algorithms; Parallel machines; Random variables; State estimation; State-space methods; Testing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Decision and Control, 1993., Proceedings of the 32nd IEEE Conference on
Conference_Location :
San Antonio, TX
Print_ISBN :
0-7803-1298-8
Type :
conf
DOI :
10.1109/CDC.1993.325592
Filename :
325592
Link To Document :
بازگشت