DocumentCode :
2115867
Title :
Scale Invariant Feature Transform as feature tracking method in 4D imaging: A feasibility study
Author :
Paganelli, C. ; Peroni, M. ; Pennati, F. ; Baroni, Guido ; Summers, P. ; Bellomi, M. ; Riboldi, Marco
Author_Institution :
Dept. of Bioeng., Politec. di Milano, Milan, Italy
fYear :
2012
fDate :
Aug. 28 2012-Sept. 1 2012
Firstpage :
6543
Lastpage :
6546
Abstract :
We propose the use of Scale Invariant Feature Transform (SIFT) as a method able to extract stable landmarks from 4D images and to quantify internal motion. We present a preliminary validation of the SIFT method relying on expert user identification of landmarks and then apply it to 4D lung CT and liver MRI data. Results demonstrate SIFT capabilities as an operator-independent feature tracking method.
Keywords :
biomedical MRI; computerised tomography; feature extraction; liver; lung; medical image processing; target tracking; transforms; 4D imaging; 4D lung CT data; SIFT method; expert user landmark identification; internal motion quantification; liver MRI data; operator independent feature tracking method; scale invariant feature transform; stable landmark extraction; Computed tomography; Feature extraction; Liver; Lungs; Magnetic resonance imaging; Tracking; Trajectory; Algorithms; Computer Simulation; Humans; Image Interpretation, Computer-Assisted; Liver; Lung; Magnetic Resonance Imaging; Models, Statistical; Movement; Normal Distribution; Pattern Recognition, Automated; Software; Time Factors; Tomography, X-Ray Computed;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE
Conference_Location :
San Diego, CA
ISSN :
1557-170X
Print_ISBN :
978-1-4244-4119-8
Electronic_ISBN :
1557-170X
Type :
conf
DOI :
10.1109/EMBC.2012.6347493
Filename :
6347493
Link To Document :
بازگشت