DocumentCode :
2116463
Title :
A comparison of hierarchical and partitional clustering techniques for multispectral image classification
Author :
Wilson, H.G. ; Boots, B. ; Millward, A.A.
Author_Institution :
Dept. of Geogr., Waterloo Univ., Ont., Canada
Volume :
3
fYear :
2002
fDate :
24-28 June 2002
Firstpage :
1624
Abstract :
Unsupervised classification of remotely sensed data has traditionally been performed using partitional clustering procedures. This paper compares six classification results for a small Landsat 7 TM sub-image of Hainan Province in China. Of all clustering procedures, the hierarchical nearest neighbour linkage had the lowest classification accuracy, whereas the combinatorial K-means partitional procedure produced the best classification result.
Keywords :
hierarchical systems; image classification; remote sensing; statistical analysis; China; Hainan Province; Landsat 7 TM sub-image; combinatorial K-means partitional procedure; hierarchical clustering technique; hierarchical nearest neighbour linkage; multispectral image classification; partitional clustering technique; remotely sensed data; unsupervised classification; Clustering algorithms; Clustering methods; Data mining; Geography; Image analysis; Multispectral imaging; Partitioning algorithms; Pattern recognition; Remote sensing; Satellites;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International
Print_ISBN :
0-7803-7536-X
Type :
conf
DOI :
10.1109/IGARSS.2002.1026201
Filename :
1026201
Link To Document :
بازگشت