DocumentCode :
2116547
Title :
Information content of multi-angular remote sensing data
Author :
Xu, Wangli ; Yang, Hua ; Li, Xiaowen ; Wang, Jindi ; Yan, Guangjian
Author_Institution :
Dept. of Math., Beijing Normal Univ., China
Volume :
3
fYear :
2002
fDate :
2002
Firstpage :
1636
Abstract :
We take the kernel-driven model as an example, focus on the information content definition and calculation of multi-angular remote sensing (MARS) data. We study four methods to measure the information content of MARS data: Fisher statistic, information entropy, determinant and sum of the diagonal elements of the information matrix, how to use the Fisher statistic theory and information entropy to measure the information content of MARS data, to calculate the information content of the dataset on the three unknowns for different subsets of the data. The analyses show that information entropy is a good tool for measuring information content of MARS data.
Keywords :
remote sensing; Fisher statistic theory; information content; information entropy; information matrix; kernel-driven model; multi-angular remote sensing data; Cities and towns; Geography; Information entropy; Kernel; Mars; Mathematics; Optical scattering; Remote sensing; Solid modeling; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Geoscience and Remote Sensing Symposium, 2002. IGARSS '02. 2002 IEEE International
Print_ISBN :
0-7803-7536-X
Type :
conf
DOI :
10.1109/IGARSS.2002.1026205
Filename :
1026205
Link To Document :
بازگشت