DocumentCode :
2125090
Title :
Application of Chebechev´s inequality theorem in the design of optimal non-linear filters
Author :
Challa, Subhash ; Faruqi, Farhan A.
Author_Institution :
Signal Process. Res. Center, Queensland Univ. of Technol., Brisbane, Qld., Australia
Volume :
3
fYear :
1998
fDate :
12-15 May 1998
Firstpage :
1277
Abstract :
Chebechev´s inequality theorem from the theory of probability and statistics provides an upper bound for the amount of probability in the “tails” of any given probability density function. This theorem has interesting applications in the numerical solution of the Fokker-Planck-Kolmogorov equation (FPKE) as shown in this paper. Numerical solution of FPKE is an essential component of the design of optimal nonlinear filters. The solution of the FPKE in conjunction with the Bayes´ conditional density lemma provides optimal (minimum variance) state estimates of any general stochastic dynamic system (SDS)
Keywords :
Bayes methods; Chebyshev filters; Fokker-Planck equation; circuit optimisation; digital filters; nonlinear filters; parameter estimation; probability; recursive estimation; statistical analysis; stochastic processes; Bayes´ conditional density; Chebechev´s inequality theorem; Fokker-Planck-Kolmogorov equation; PDF; minimum variance; numerical solution; optimal nonlinear filters design; optimal state estimates; probability density function; statistics; stochastic dynamic system; upper bound; Australia; Density measurement; Filtering theory; Finite difference methods; Nonlinear dynamical systems; Nonlinear filters; Probability density function; Signal processing; State estimation; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on
Conference_Location :
Seattle, WA
ISSN :
1520-6149
Print_ISBN :
0-7803-4428-6
Type :
conf
DOI :
10.1109/ICASSP.1998.681678
Filename :
681678
Link To Document :
بازگشت