DocumentCode :
2126473
Title :
Gradient-projection blind deconvolution
Author :
Yang, Yongyi ; Galatsanos, N.P. ; Stark, Henry
Author_Institution :
Dept. of Electr. & Comput. Eng., Illinois Inst. of Technol., Chicago, IL, USA
Volume :
3
fYear :
1994
fDate :
13-16 Nov 1994
Firstpage :
192
Abstract :
We present a gradient-projection algorithm for solving the classical blind deconvolution problem. In our approach all known a priori information about both the unknown source and blurring functions is expressed via constraint sets. In computer simulations, the algorithm performed well even when the prior information was not accurate. In this study the algorithm is also compared with a conjugate gradient algorithm proposed by Lane (see J. Opt. Soc. Am. A, vol.9, no.9, p.1508-1514, 1992)
Keywords :
deconvolution; image restoration; parameter estimation; set theory; blurring functions; computer simulations; conjugate gradient algorithm; constraint sets; gradient-projection algorithm; gradient-projection blind deconvolution; image restoration; parameter estimation; source functions; Computational modeling; Computer simulation; Convergence; Convolution; Cost function; Deconvolution; Hilbert space; Iterative algorithms; Large-scale systems; Minimization methods;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Image Processing, 1994. Proceedings. ICIP-94., IEEE International Conference
Conference_Location :
Austin, TX
Print_ISBN :
0-8186-6952-7
Type :
conf
DOI :
10.1109/ICIP.1994.413861
Filename :
413861
Link To Document :
بازگشت