DocumentCode :
2128826
Title :
Crossing-point estimation for sampled random signals
Author :
Smecher, Graeme ; Champagne, Benoit
Author_Institution :
Dept. of Electr. & Comput. Eng., McGill Univ., Montreal, QC
fYear :
2008
fDate :
4-7 May 2008
Abstract :
We consider the problem of estimating the crossing points of a known carrier signal with a Gaussian random process, given uniformly-spaced, noisy samples of the random process. We derive the maximum a-posteriori (MAP) estimator for the problem, along with the Cramer-Rao bound (CRB) on estimator variance. We also derive an alternate, computationally efficient estimator using a minimum mean-squared error (MMSE) approach, and show that this MMSE estimator approximates the MAP estimator in the high-SNR regime. Simulations show that both MMSE and MAP estimators approach the CRB and outperform alternative estimators based on inverse linear and Lagrange interpolating polynomials.
Keywords :
Gaussian processes; interpolation; least mean squares methods; maximum likelihood estimation; polynomials; signal sampling; Cramer-Rao bound; Gaussian random process; Lagrange interpolating polynomials; MMSE estimator; crossing-point estimation; inverse linear polynomial; maximum a-posteriori estimator; minimum mean-squared error; sampled random signals; Additive noise; Gaussian noise; Lagrangian functions; Maximum a posteriori estimation; Polynomials; Pulse width modulation; Random processes; Sampling methods; Signal processing; Space vector pulse width modulation; Least-Mean-Square Methods; Level-Crossing Problems; MAP Estimation; Pulse-Width Modulation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical and Computer Engineering, 2008. CCECE 2008. Canadian Conference on
Conference_Location :
Niagara Falls, ON
ISSN :
0840-7789
Print_ISBN :
978-1-4244-1642-4
Electronic_ISBN :
0840-7789
Type :
conf
DOI :
10.1109/CCECE.2008.4564522
Filename :
4564522
Link To Document :
بازگشت