DocumentCode :
2128917
Title :
Nonconforming H1-Galerkin mixed finite element method for nonlinear sine-Gordon equations
Author :
Fan, Mingzhi ; Wang, Fenling
Author_Institution :
Math. & Stat., Xuchang Univ., Xuchang, China
fYear :
2012
fDate :
21-23 April 2012
Firstpage :
2712
Lastpage :
2715
Abstract :
An H1-Galerkin mixed finite element approximate scheme is proposed with nonconforming quasi-Wilson element for a class of nonlinear sine-Gordon equations. by use of a special property of quasi-Wilson element, i.e. its consistency error is one order higher than the interpolation error, the corresponding optimal error estimates are derived without the generalized elliptic projection which is necessary for classical error estimates of most finite element methods. The scheme is not necessary to satisfy LBB consistency condition.
Keywords :
error analysis; finite element analysis; sine-Gordon equation; LBB consistency condition; consistency error; interpolation error; nonconforming H1-Galerkin mixed finite element method; nonconforming quasiWilson element; nonlinear sine-Gordon equations; Convergence; Equations; Error analysis; Finite element methods; Interpolation; Partial differential equations; H1-Galerkin approximate scheme; nonlinear sine-Gordon equations; optimal error estimate; quasi-Wilson element;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Consumer Electronics, Communications and Networks (CECNet), 2012 2nd International Conference on
Conference_Location :
Yichang
Print_ISBN :
978-1-4577-1414-6
Type :
conf
DOI :
10.1109/CECNet.2012.6202068
Filename :
6202068
Link To Document :
بازگشت