DocumentCode :
2129374
Title :
A comparison of initialization schemes for blind adaptive beamforming
Author :
Biedka, Thomas E.
Author_Institution :
Raytheon E-Syst. Inc., Greenville, TX, USA
Volume :
3
fYear :
1998
fDate :
12-15 May 1998
Firstpage :
1665
Abstract :
Many blind adaptive beamforming algorithms require the selection of one or more non-zero initial weight vectors. Proper selection of the initial weight vectors can speed algorithm convergence and help ensure convergence to the desired solutions. Three alternative initialization approaches are compared here, all of which depend only on second order statistics of the observed data. These methods are based on Gram-Schmidt orthogonalization, eigendecomposition, and QR decomposition of the observed data covariance matrix. We show through computer simulation that the eigendecomposition approach yields the best performance
Keywords :
array signal processing; covariance matrices; eigenvalues and eigenfunctions; matrix decomposition; Gram-Schmidt orthogonalization; QR decomposition; algorithm convergence; blind adaptive beamforming; data covariance matrix; eigendecomposition; initialization schemes; nonzero initial weight vectors; performance; quadratic residue; second order statistics; Adaptive algorithm; Antenna arrays; Application software; Array signal processing; Computer simulation; Covariance matrix; Mobile computing; Portable computers; Receiving antennas; Statistics;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on
Conference_Location :
Seattle, WA
ISSN :
1520-6149
Print_ISBN :
0-7803-4428-6
Type :
conf
DOI :
10.1109/ICASSP.1998.681775
Filename :
681775
Link To Document :
بازگشت