DocumentCode :
2129655
Title :
Posterior probability estimation for actual and artifactual components from MEG data
Author :
Phothisonothai, Montn ; Yoshimura, Yuko ; Kikuchi, Mitsuru ; Minabe, Yoshio ; Watanabe, Katsumi
Author_Institution :
Research Center for Advanced Science and Technology, The University of Tokyo, 153-8904 Japan
fYear :
2013
fDate :
Jan. 31 2013-Feb. 1 2013
Firstpage :
176
Lastpage :
177
Abstract :
The presence of physiological artifacts from magnetoencephalogram (MEG) data, e.g., eye movements, muscular contractions, cardiac signals, sudden high-amplitude changes, and environmental noise reduce the correctness of interpretation. Therefore, the automatic artifact removal is needed. In this paper, we present a posterior probabilities of actual and artifactual components in order to determine optimal threshold values for each parameter. The results showed that the actual and artifactual MEG components were classified clearly by using optimal threshold values of 1.352, 0.017, 0.443, 0.949, and 0.963 for kurtosis (K), probability density (PD), central moment of frequency (CMoF), spectral entropy (SpecEn), and fractal dimension (FD), respectively.
Keywords :
Decision support systems; Bayesian decision; MEG; Magnetoencephalogram; hard thresholding; probability density;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Knowledge and Smart Technology (KST), 2013 5th International Conference on
Conference_Location :
Chonburi, Thailand
Print_ISBN :
978-1-4673-4850-8
Type :
conf
DOI :
10.1109/KST.2013.6512811
Filename :
6512811
Link To Document :
بازگشت