DocumentCode :
2131789
Title :
Minimum classification error training with automatic setting of loss smoothness
Author :
Watanabe, Hideyuki ; Tokuno, Jun´ichi ; Ohashi, Tsukasa ; Katagiri, Shigeru ; Ohsaki, Miho
Author_Institution :
MASTAR Project, Nat. Inst. of Inf. & Commun. Technol., Kyoto, Japan
fYear :
2011
fDate :
18-21 Sept. 2011
Firstpage :
1
Lastpage :
6
Abstract :
The loss function smoothness embedded in the Minimum Classification Error formalization increases the number of virtual training samples, enables high robustness to unseen samples, and well approximates the ultimate, minimum classification error probability status. However, a rational method for controlling smoothness has not yet been developed. To alleviate this long-standing problem, we propose a new method that automatically sets the loss function smoothness through Parzen kernel (window) width estimation with a cross-validation maximum likelihood method. Experiments clearly show our proposed method´s high utility.
Keywords :
error statistics; maximum likelihood estimation; pattern classification; Parzen kernel width estimation; automatic setting; cross-validation maximum likelihood method; loss function smoothness; loss smoothness; minimum classification error formalization; minimum classification error probability status; minimum classification error training; virtual training samples; window width estimation; Error probability; Kernel; Mathematical model; Maximum likelihood estimation; Prototypes; Training; Cross-validation maximum likelihood method; Loss smoothness; Minimum classification error; Parzen estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Machine Learning for Signal Processing (MLSP), 2011 IEEE International Workshop on
Conference_Location :
Santander
ISSN :
1551-2541
Print_ISBN :
978-1-4577-1621-8
Electronic_ISBN :
1551-2541
Type :
conf
DOI :
10.1109/MLSP.2011.6064575
Filename :
6064575
Link To Document :
بازگشت