• DocumentCode
    2133289
  • Title

    An asymptotic analysis of Bayesian state estimation in hidden Markov models

  • Author

    Yamazaki, Keisuke

  • Author_Institution
    Precision & Intell. Lab., Tokyo Inst. of Technol., Yokohama, Japan
  • fYear
    2011
  • fDate
    18-21 Sept. 2011
  • Firstpage
    1
  • Lastpage
    6
  • Abstract
    Hidden Markov models are widely used for modeling underlying dynamics of sequence data. The accurate hidden state estimation is one of the central issues on practical application since the dynamics is described as a sequence of hidden states. However, while there are many studies on parameter estimation, mathematical properties of the hidden state estimation have not been clarified yet. The present paper analyzes the accuracy of a Bayesian hidden state estimation and shows that the dominant order of an error function depends on redundancy of states.
  • Keywords
    Bayes methods; estimation theory; hidden Markov models; mathematical analysis; Bayesian state estimation; asymptotic analysis; data sequence; error function; hidden Markov models; hidden state estimation; mathematical properties; parameter estimation; Accuracy; Analytical models; Bayesian methods; Data models; Hidden Markov models; Mathematical model; State estimation; Bayes statistics; Hidden Markov models; algebraic geometry; asymptotic analysis; latent variable estimation;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Machine Learning for Signal Processing (MLSP), 2011 IEEE International Workshop on
  • Conference_Location
    Santander
  • ISSN
    1551-2541
  • Print_ISBN
    978-1-4577-1621-8
  • Electronic_ISBN
    1551-2541
  • Type

    conf

  • DOI
    10.1109/MLSP.2011.6064623
  • Filename
    6064623