DocumentCode :
2137457
Title :
Polynomial completeness criteria in finite Boolean algebras
Author :
Romov, B.A.
Author_Institution :
New York, USA
fYear :
1996
fDate :
29-31 May 1996
Firstpage :
262
Lastpage :
266
Abstract :
For a given finite Boolean algebra with r(r⩾2) atoms we consider the set BF(r) of all polynomials produced by superpositions of the main operations and r atomic constants. Using the isomorphism between BF(r) and P, the arity-calibrated product of r two-valued logic algebras P2, and also the description of all maximal subalgebras of P2r, we establish a general completeness criterion in BF(r), a Sheffer criterion for a single Boolean function to be a generating element in BF(r), and Slupecki type criterion in BF(r) as well
Keywords :
Boolean algebra; algebra; process algebra; Sheffer criterion; Slupecki type criterion; arity-calibrated product; completeness criteria; finite Boolean algebras; logic algebras; maximal subalgebras; multiple base relation; polynomials; two-valued logic algebras; Boolean algebra; Boolean functions; Cloning; Computer architecture; Computer networks; Lattices; Logic design; Logic functions; Polynomials; Quantum computing;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Multiple-Valued Logic, 1996. Proceedings., 26th International Symposium on
Conference_Location :
Santiago de Compostela
ISSN :
0195-623X
Print_ISBN :
0-8186-7392-3
Type :
conf
DOI :
10.1109/ISMVL.1996.508377
Filename :
508377
Link To Document :
بازگشت