DocumentCode :
2139060
Title :
Bayesian bootstrap filtering for the LEO satellite orbit determination
Author :
Kim, Soohong ; Chun, Joohwan
Author_Institution :
Dept. of Electr. Eng., Korea Adv. Inst. of Sci. & Technol., Seoul, South Korea
Volume :
2
fYear :
2000
fDate :
2000
Firstpage :
1611
Abstract :
This paper presents a new Bayesian bootstrap filtering approach for the low Earth orbit (LEO) satellite orbit determination using magnetometer measurements. To overcome the divergence problem of the extended Kalman filter (EKF), a hybrid bootstrap filter is proposed. The filters uses the magnitude of the magnetic field vector as measurements, and does not need the attitude information of the satellite. According to our simulation study our algorithm converges rapidly to the arc orbital parameters even in the presence of large initial position errors, and attains a few tens of kilometers of the position estimation error
Keywords :
Bayes methods; artificial satellites; astronomical techniques; celestial mechanics; geomagnetism; recursive filters; Bayesian bootstrap filtering; EKF; LEO satellite orbit determination; arc orbital parameters; divergence problem; extended Kalman filter; hybrid bootstrap filt; low Earth orbit satellite orbit determination; magnetic field vector; magnetometer measurements; position estimation error; Bayesian methods; Extraterrestrial measurements; Filtering; Filters; Low earth orbit satellites; Magnetic field measurement; Magnetic sensors; Magnetic separation; Magnetometers; Switches;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Vehicular Technology Conference Proceedings, 2000. VTC 2000-Spring Tokyo. 2000 IEEE 51st
Conference_Location :
Tokyo
ISSN :
1090-3038
Print_ISBN :
0-7803-5718-3
Type :
conf
DOI :
10.1109/VETECS.2000.851399
Filename :
851399
Link To Document :
بازگشت