DocumentCode :
2139792
Title :
Clustering in product space for fuzzy inference
Author :
Berenji, Hamid R. ; Khedkar, Pratap S.
Author_Institution :
NASA Ames Res. Center, Mountain View, CA, USA
fYear :
1993
fDate :
1993
Firstpage :
1402
Abstract :
The authors present an algorithm that generates a set of fuzzy rules with linear consequents from raw data using radial basis functions and an extended clustering approach. The algorithm uses output information in conjunction with adding and pruning neurons to generate a compact structure and its rough approximation quickly from one pass over the data. It is shown that this algorithm can approximate a typical nonlinear switching function by generating a set of fuzzy rules
Keywords :
fuzzy logic; inference mechanisms; neural nets; uncertainty handling; clustering; fuzzy inference; fuzzy rules; neural nets; nonlinear switching function; product space; radial basis functions; rough approximation; Approximation algorithms; Artificial intelligence; Clustering algorithms; Data mining; Fuzzy set theory; Fuzzy sets; Fuzzy systems; Inference algorithms; NASA; Neurons;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Fuzzy Systems, 1993., Second IEEE International Conference on
Conference_Location :
San Francisco, CA
Print_ISBN :
0-7803-0614-7
Type :
conf
DOI :
10.1109/FUZZY.1993.327598
Filename :
327598
Link To Document :
بازگشت