DocumentCode :
2143982
Title :
Image denoising using multiple compaction domains
Author :
Ishwar, Prakash ; Ratakonda, Krishna ; Moulin, Pierre ; Ahuja, Narendra
Author_Institution :
Beckman Inst. for Adv. Sci. & Technol., Illinois Univ., Urbana, IL, USA
Volume :
3
fYear :
1998
fDate :
12-15 May 1998
Firstpage :
1889
Abstract :
We present a novel framework for denoising signals from their compact representation in multiple domains. Each domain captures, uniquely, certain signal characteristics better than others. We define confidence sets around data in each domain and find sparse estimates that lie in the intersection of these sets, using a POCS algorithm. Simulations demonstrate the superior nature of the reconstruction (both in terms of mean-square error and perceptual quality) in comparison to the adaptive Wiener filter
Keywords :
Gaussian noise; image reconstruction; image representation; wavelet transforms; white noise; AWGN; POCS algorithm; adaptive Wiener filter; compact representation; confidence sets; image denoising; image reconstruction; mean-square error; multiple compaction domains; multiple signal representation; perceptual quality; signal characteristics; signal denoising; simulations; sparse estimates; wavelet filters; AWGN; Additive white noise; Compaction; Gaussian noise; Image denoising; Image reconstruction; Noise reduction; Signal representations; Wavelet domain; Wiener filter;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on
Conference_Location :
Seattle, WA
ISSN :
1520-6149
Print_ISBN :
0-7803-4428-6
Type :
conf
DOI :
10.1109/ICASSP.1998.681833
Filename :
681833
Link To Document :
بازگشت