DocumentCode
2145007
Title
Type-2 Fuzzy Logic Controllers Optimization Using Genetic Algoritms and Particle Swarm Optimization
Author
Martinez, Ricardo ; Rodriguez, Antonio ; Castillo, Oscar ; Aguilar, Luis T.
Author_Institution
UABC, Tijuana, Mexico
fYear
2010
fDate
14-16 Aug. 2010
Firstpage
724
Lastpage
727
Abstract
In this paper we apply bio-inspired optimization methods to design type-2 fuzzy logic controllers (FLC) to minimize the steady state error of linear systems. We test the optimal FLC obtained by the genetic algorithms and the PSO using benchmark plants. The bio-inspired methods are used to find the parameters of the membership functions of the FLC to obtain the optimal controller. Simulation results are implemented in Simulink showing the feasibility of the proposed approach.
Keywords
fuzzy control; genetic algorithms; linear systems; optimal control; particle swarm optimisation; FLC; PSO; fuzzy logic controllers optimization; genetic algorithms; linear systems; optimal controller; particle swarm optimization; steady state error; Fuzzy logic; Fuzzy systems; Genetics; Linear systems; Mobile robots; Optimization; Particle swarm optimization; Fuzzy Logic Controllers; genetic algorithms; particle swarm optimization;
fLanguage
English
Publisher
ieee
Conference_Titel
Granular Computing (GrC), 2010 IEEE International Conference on
Conference_Location
San Jose, CA
Print_ISBN
978-1-4244-7964-1
Type
conf
DOI
10.1109/GrC.2010.43
Filename
5576052
Link To Document