DocumentCode :
2145007
Title :
Type-2 Fuzzy Logic Controllers Optimization Using Genetic Algoritms and Particle Swarm Optimization
Author :
Martinez, Ricardo ; Rodriguez, Antonio ; Castillo, Oscar ; Aguilar, Luis T.
Author_Institution :
UABC, Tijuana, Mexico
fYear :
2010
fDate :
14-16 Aug. 2010
Firstpage :
724
Lastpage :
727
Abstract :
In this paper we apply bio-inspired optimization methods to design type-2 fuzzy logic controllers (FLC) to minimize the steady state error of linear systems. We test the optimal FLC obtained by the genetic algorithms and the PSO using benchmark plants. The bio-inspired methods are used to find the parameters of the membership functions of the FLC to obtain the optimal controller. Simulation results are implemented in Simulink showing the feasibility of the proposed approach.
Keywords :
fuzzy control; genetic algorithms; linear systems; optimal control; particle swarm optimisation; FLC; PSO; fuzzy logic controllers optimization; genetic algorithms; linear systems; optimal controller; particle swarm optimization; steady state error; Fuzzy logic; Fuzzy systems; Genetics; Linear systems; Mobile robots; Optimization; Particle swarm optimization; Fuzzy Logic Controllers; genetic algorithms; particle swarm optimization;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Granular Computing (GrC), 2010 IEEE International Conference on
Conference_Location :
San Jose, CA
Print_ISBN :
978-1-4244-7964-1
Type :
conf
DOI :
10.1109/GrC.2010.43
Filename :
5576052
Link To Document :
بازگشت